## Low-Speed Rotary Actuator

## CRQ2X/MSQX Series

CRQ2 Size: 10, 15, 20, 30, 40 MSQX Size: 10, 20, 30, 50

## Possible to transfer a workpiece at low-speed.

Realized a stable motion


Measurement conditions / Fluid: Air
Mounting orientation: Vertical without load Operating pressure: 0.5 MPa
Pneumatic circuit: Meter-out circuit
Ambient temperature: Room temperature
Dimensions compatible with the CRQ2, MSQ series

## CRQ2X/MSQX Series Model Selection

* The selection procedure of the rotary for low-speed is the same as for an ordinary rotary. If the rotation time exceeds 2 s per $90^{\circ}$, however, the necessary torque and the kinetic energy are calculated with rotation time of 2 s per $90^{\circ}$.


## Selection Procedure <br> Remarks <br> Selection Example

## Operating conditions

Operating conditions are as follows:

- Provisionally selected model
- Operating pressure: MPa
- Mounting position
- Load type

Static load: N.m
Resistance load: $N \cdot m$
Inertial load: N•m

- Load dimension: m
- Load mass: kg
- Rotation time: s
- Rotation angle: rad
- See P. 304 for load type.
- The unit of the rotation angle is Radians.
$180^{\circ}=\pi \mathrm{rad}$
$90^{\circ}=\pi / 2 \mathrm{rad}$


## Calculation of moment of inertia

Calculate the moment of inertia of the load.
$\Rightarrow$ P. 303

- If the moment of inertia of the load is made up of multiple components, calculate the moment of inertia of each component and add them together.

Load 1 moment of inertia: $\mathbf{I}_{1}$

$$
I_{1}=0.4 \times \frac{0.15^{2}+0.05^{2}}{12}+0.4 \times 0.05^{2}=0.001833
$$

Load 2 moment of inertia: $I_{2}$

$$
I_{2}=0.2 \times \frac{0.025^{2}}{2}+0.2 \times 0.1^{2}=0.002063
$$

Total moment of inertia: I
$\mathbf{I}=\mathbf{I}_{1}+\mathrm{I}_{2}=\mathbf{0 . 0 0 3 8 9 6 [ \mathrm { kg } \cdot \mathrm { m } ^ { 2 } ]}$

## Calculation of necessary torque

Calculate necessary torque
corresponding to the load type, and ensure it is within effective torque range.

- Static load (Ts) Necessary torque T = Ts
- Resistance load (Tf) Necessary torque $T=T f x$ (3 to 5 )
- Inertial load (Ta)

Necessary torque $T=T a \times 10$
$\Rightarrow$ P. 304

- When calculating the inertial load, if the rotation time exceeds 2 s per $90^{\circ}$, inertial load is calculated with rotation time of 2 s per $90^{\circ}$.
- Even for resistance load, when the load is rotated, necessary torque calculated from inertial load shall be added.

Necessary torque $T=T f x(3$ to 5$)+T a$ $\times 10$

## Inertial load: Ta

$\mathrm{Ta}=\mathbf{I} \cdot \dot{\omega}$
$\dot{\omega}=\frac{2 \theta}{\mathbf{t}^{2}}\left[\mathrm{rad} / \mathrm{s}^{2}\right]$
Necessary torque: $\mathbf{T}$
$\mathrm{T}=\mathrm{Ta} \times 10$
$=0.003896 \times \frac{2 \times \pi}{4^{2}} \times 10=0.015[\mathrm{~N} \cdot \mathrm{~m}]$
( t is calculated with 2 s per $90^{\circ}$.)
$0.015 \mathrm{~N} \cdot \mathrm{~m}$ < Effective torque OK

Checking rotation time

Confirm that it is within the adjustable range of rotation time.
$\Rightarrow$ P. 305

- Converted to the time per $90^{\circ}$ for comparison. (For comparison, $6 \mathrm{~s} / 180^{\circ}$ is converted to $\mathbf{3 s} / 90^{\circ}$.)


## $1.0 \leq t \leq 5$

$t=3 \mathbf{s} / 90^{\circ} O K$

## 4

## Calculation of kinetic energy

Confirm that the load's kinetic energy is within the allowable value.

Can be confirmed by the graph of the moment of inertia and the rotation time.

$$
\Rightarrow \text { P. } 305
$$

## Checking allowable load

Check if the load applied to the product is within the allowable range.
$\Rightarrow$ P. 306

- If the rotation time exceeds 2 s per $9 \mathbf{0}^{\circ}$, kinetic energy is calculated with rotation time of 2 s per $90^{\circ}$.
- If the allowable value is exceeded, an external cushioning mechanism such as an absorber needs to be installed.

$$
\begin{aligned}
& E=\frac{1}{2} \cdot I \cdot \omega^{2} \\
& \omega=\frac{2 \cdot \theta}{\mathrm{t}} \\
& \text { Kinetic energy } \\
& \quad \frac{1}{2} \times 0.003896 \times\left(\frac{2 \times \pi}{4}\right)^{2}=0.0048[\mathrm{~J}] \\
& \quad\left(\mathrm{t} \text { is calculated with } 2 \mathrm{~s} \text { per } 90^{\circ} .\right) \\
& 0.0048[\mathrm{~J}] \text { < Allowable energy OK }
\end{aligned}
$$

- If the allowable value is exceeded, an external bearing needs to be installed.

```
\(M=0.4 \times 9.8 \times 0.05+0.2 \times 9.8 \times 0.1\)
```

$=0.392[\mathrm{~N} \cdot \mathrm{~m}]$
0.392 [ $\mathrm{N} \cdot \mathrm{m}$ ] < Allowable moment load OK

## Equation Table of Moment of Inertia (Calculation of moment of inertia I)

1. Thin shaft

Position of rotational axis:
Perpendicular to the shaft through the center of gravity

2. Thin rectangular plate

Position of rotational axis:
Parallel to side $b$ through the center of gravity

3. Thin rectangular plate
(Including rectangular parallelepiped)
Position of rotational axis:
Perpendicular to the plate through the center of gravity

4. Round plate (Including column)

Position of rotational axis:
Passing through the center axis


## 6. Thin round plate

Position of rotational axis:
Passing through the diameter

8. When rotational axis and the center of the load are not concentric.

$\mathrm{I}=\mathbf{K}+\mathbf{m} \cdot \mathbf{L}^{2}$
$\mathbf{K}$ : The moment of inertia around the center of gravity of the load
In case of 4. Round plate $\mathbf{K}=\mathbf{m} \cdot \frac{\mathbf{r}^{2}}{2}$

## 9. Gear transmission



## CRQ2X/MSQX Series

## Load Type

Calculation method of necessary torque depends on the load type. Refer to the table below.

| Load type |  |  |
| :---: | :---: | :---: |
| Static load: Ts | Resistance load: Tf | Inertial load: Ta |
| Only pressing force is necessary. (e.g. for clamping) | Weight or friction force is applied to rotating direction. | Rotate the load with inertia. |
|  | Gravity is applied. <br> Friction force is applied. | Center of rotation and center of gravity of the load are concentric. <br> Rotation shaft is vertical (up and down). |
| $\mathbf{T s}=\mathbf{F} \cdot \mathbf{L}$ <br> Ts: Static load ( $\mathrm{N} \cdot \mathrm{m}$ ) <br> F: Clamping force ( N ) <br> $\mathbf{L}$ : Distance from the rotation center to the clamping position (m) | Gravity is applied in rotating direction. $T f=m \cdot g \cdot L$ <br> Friction force is applied in rotating direction. $\mathbf{T f}=\mu \cdot \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{L}$ <br> Tf: Resistance load ( $\mathrm{N} \cdot \mathrm{m}$ ) <br> m : Load mass (kg) <br> g : Gravitational acceleration $9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ <br> L : Distance from the rotation center to the point of application of the weight or friction force ( m ) <br> $\mu$ : Friction coefficient | $\begin{aligned} & \mathbf{T a}=\mathrm{I} \cdot \omega=\mathrm{I} \cdot \frac{2 \theta}{\mathbf{t}^{2}} \\ & \mathrm{Ta}: \text { Inertial load }(\mathrm{N} \cdot \mathrm{~m}) \\ & \mathrm{I}: \text { Moment of inertia }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \\ & \omega: \text { Angular acceleration }\left(\mathrm{rad} / \mathrm{s}^{2}\right) \\ & \theta: \text { Rotation angle }(\mathrm{rad}) \\ & \mathbf{t}: \text { Rotation time }(\mathrm{s}) \end{aligned}$ <br> For low speed rotary, if the rotation time exceeds 2 s per $90^{\circ}$, inertial load is calculated with rotation time of 2 s per $90^{\circ}$. |
| Necessary torque: $\mathbf{T}=\mathbf{T s}$ | Necessary torque: $\mathbf{T}=\mathbf{T f} \times(3 \text { to } 5)^{\text {Note) }}$ | Necessary torque: $\mathbf{T}=\mathbf{T a} \times 10^{\text {Note) }}$ |
| - Resistance load: Gravity or friction force is applied to rotating direction. <br> Ex. 1) Rotation shaft is horizontal (lateral), and the rotation center and the center of gravity of the load are not concentric. <br> Ex. 2) Load moves by sliding on the floor <br> * The total of resistance load and inertial load is the necessary torque. $\mathbf{T}=\mathbf{T f} \times$ (3 to 5) $+\mathbf{T a} \times 10$ <br> Note) To adjust the speed, margin is necessary for Tf and Ta . |  | To adjust the speed, margin is necessary for Tf and Ta . |

## Effective Torque

| Unit: N-m |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Size | Operating pressure (MPa) |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.1 | 0.15 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
| CRQ2X | 10 | - | 0.09 | 0.12 | 0.18 | 0.24 | 0.30 | 0.36 | 0.42 | - | - | - |
|  | 15 | - | 0.22 | 0.30 | 0.45 | 0.60 | 0.75 | 0.90 | 1.04 | - | - | - |
|  | 20 | 0.37 | 0.55 | 0.73 | 1.10 | 1.47 | 1.84 | 2.20 | 2.57 | 2.93 | 3.29 | 3.66 |
|  | 30 | 0.62 | 0.94 | 1.25 | 1.87 | 2.49 | 3.11 | 3.74 | 4.37 | 4.99 | 5.60 | 6.24 |
|  | 40 | 1.06 | 1.59 | 2.11 | 3.18 | 4.24 | 5.30 | 6.36 | 7.43 | 8.48 | 9.54 | 10.6 |
| MSQX | 10 | 0.18 | - | 0.36 | 0.53 | 0.71 | 0.89 | 1.07 | 1.25 | 1.42 | 1.60 | 1.78 |
|  | 20 | 0.37 | - | 0.73 | 1.10 | 1.47 | 1.84 | 2.20 | 2.57 | 2.93 | 3.29 | 3.66 |
|  | 30 | 0.55 | - | 1.09 | 1.64 | 2.18 | 2.73 | 3.19 | 3.82 | 4.37 | 4.91 | 5.45 |
|  | 50 | 0.93 | - | 1.85 | 2.78 | 3.71 | 4.64 | 5.57 | 6.50 | 7.43 | 8.35 | 9.28 |



MSQX


Note 2) Except for cases when an external stopper is used, the holding torque at the operation end is half of the table value.

## Kinetic Energy/Rotating Time

In a rotational movement, the kinetic energy of a load may damage the internal parts, even if the required torque for a load is small. Consider the moment of inertia and rotation time before selecting a model.
(For model selection, refer to the moment of inertia and rotation time graph as shown on the below table.)

## Allowable kinetic energy and rotation time adjustment range

Set the rotation time, within stable operational guidelines, using the adjustment range specification table as detailed below. When operating at low-speeds which exceed the rotation time adjustment range, use caution as it may result in sticking or malfunction.

| Model | Size | Allowable kinetic energy (J) | Stable operational rotation time adjustment range $\left(\mathrm{s} / 90^{\circ}\right)$ |
| :---: | :---: | :---: | :---: |
| CRQ2X | $\mathbf{1 0}$ | 0.00025 |  |
|  | $\mathbf{1 5}$ | 0.0039 |  |
|  | $\mathbf{2 0}$ | 0.7 to 5 |  |
|  | $\mathbf{3 0}$ | 0.025 |  |
|  | $\mathbf{3 0}$ | 0.048 |  |
| MSQX | $\mathbf{4 0}$ | 0.081 |  |
|  | $\mathbf{1 0}$ | 0.007 |  |
|  | $\mathbf{2 0}$ | 0.025 |  |
|  | $\mathbf{3 0}$ | 0.048 |  |
|  | $\mathbf{5 0}$ |  |  |

Model Selection Select a model based on the moment of inertia and rotation time as shown graph below.


## CRQ2X/MSQX Series

## Allowable Load

## CRQ2X

A load up to the allowable radial/thrust load can be applied provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible. In order to further improve the operating conditions, a method such as that shown in the drawing on the right side is recommended so that a direct load is not applied to the shaft.

| Size |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Allowable radial load ( N ) | Allowable thrust load (N) |  |
|  |  | (a) | (b) |
| 10 | 14.7 | 7.8 | 15.7 |
| 15 | 19.6 | 9.8 | 19.6 |
| 20 | 49 | 29.4 | 49 |
| 30 | 78 | 49 | 98 |
| 40 | 98 | 59 | 108 |



## MSQX

Do not allow the load and moment applied to the table to exceed the allowable values shown in the table below.
(Operation beyond the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

| Size |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Allowable radial load <br> ( N ) | Allowable thrust load (N) |  | Allowable moment ( $\mathrm{N} \cdot \mathrm{m}$ ) |
|  |  | (a) | (b) |  |
| 10 | 78 | 74 | 78 | 2.4 |
| 20 | 147 | 137 | 137 | 4.0 |
| 30 | 196 | 197 | 363 | 5.3 |
| 50 | 314 | 296 | 451 | 9.7 |

## Rotary Actuator Technical Data Air Consumption

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.

* The air consumption (QcR) required for one reciprocation of the rotary actuator alone is shown in the table below, and can be used to simplify the calculation.

Formulas

$$
\begin{aligned}
& Q_{C R}=2 V \times\left(\frac{P+0.1}{0.1}\right) \times 10^{-3} \\
& Q_{C P}=2 \times a \times L \times\left(\frac{P}{0.1}\right) \times 10^{-6} \\
& Q_{C}=Q_{C R}+Q_{C P}
\end{aligned}
$$

$\mathbf{Q}_{C R}=$ Air consumption of rotary actuator
$Q_{c P}=$ Air consumption of tubing or piping
$\mathbf{V}=$ Internal volume of rotary actuator
$\mathbf{P}=$ Operating pressure
$\mathbf{L}=$ Length of piping
$\mathbf{a}=$ Internal cross section of piping
$\mathbf{Q c}_{\mathbf{c}}=$ Air consumption required for one reciprocation of rotary actuator

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of pneumatic actuators downstream. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

## Formulas

$Q_{c}=\mathbf{Q} \mathbf{c} \times \mathrm{n} \times$ Number of actuators $\times$ Reserve factor
[L (ANR)]
[L (ANR)]
$\left[\mathrm{cm}^{3}\right]$
[MPa]
[mm]
[ $\mathrm{mm}^{2}$ ]
[L (ANR)]
$\mathbf{Q c}_{2}=$ Compressor discharge flow rate $\mathbf{n}=$ Actuator reciprocations per minute
Reserve factor: 1.5 or greater

Internal Cross Section of Tubing and Steel Piping

| Nominal size | O.D. (mm) | I.D. (mm) | Internal cross section <br> $\mathbf{a}\left(\mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: | :---: |
| T $\square \mathbf{0 4 2 5}$ | 4 | 2.5 | 4.9 |
| T $\square \mathbf{0 6 0 4}$ | 6 | 4 | 12.6 |
| TU0805 | 8 | 5 | 19.6 |
| T $\square 0806$ | 8 | 6 | 28.3 |
| 1/8B | - | 6.5 | 33.2 |
| T $\square \mathbf{1 0 7 5}$ | 10 | 7.5 | 44.2 |
| TU1208 | 12 | 8 | 50.3 |
| T $\square \mathbf{1 2 0 9}$ | 12 | 9 | 63.6 |
| $\mathbf{1 / 4 B}$ | - | 9.2 | 66.5 |
| TS1612 | 16 | 12 | 113 |
| 3/8B | - | 12.7 | 127 |
| T $\square \mathbf{1 6 1 3}$ | 16 | 13 | 133 |
| 1/2B | - | 16.1 | 204 |
| 3/4B | - | 21.6 | 366 |
| 1B | - | 27.6 | 598 |
|  |  |  |  |

Air Consumption


## Low-Speed Compact Rotary Actuator Rack \& Pinion Type CRQ2X Series

 Size: 10, 15, 20, 30, 40How to Order


* Refer to page 309 for details.

Rotation angle

| 90 | $80^{\circ}$ to $100^{\circ}$ |
| ---: | ---: |
| 180 | $170^{\circ}$ to $190^{\circ}$ |

Applicable Auto Switches/Refer to pages 797 to 850 for detailed auto switch specification.

| $\stackrel{\text { ® }}{\approx}$ | Special function | Electrical entry |  | Wiring (Output) | Load voltage |  |  | Auto switch model |  | Lead wire length (m)* |  |  |  | Pre-wired connector | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | DC |  | AC | Perpendicular | In-line | $\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 1 \\ (M) \end{array}$ | $\begin{array}{\|c} \hline 3 \\ (\mathrm{~L}) \\ \hline \end{array}$ | $\begin{array}{\|c} \hline 5 \\ (Z) \\ \hline \end{array}$ |  |  |  |
|  |  | Grommet | Yes | 3-wire (NPN) | 24 V | $5 \mathrm{~V}, 12 \mathrm{~V}$ | $-$ | M9NV | M9N | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit | Relay, PLC |
|  | - |  |  | 3-wire (PNP) |  |  |  | M9PV | M9P | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BV | M9B | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  | Diagnostic indication (2-color indicator) |  |  | 3-wire (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NWV | M9NW | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  |  |  |  | 3-wire (PNP) |  |  |  | M9PWV | M9PW | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BWV | M9BW | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |  |
|  | Water resistant (2-color indicator) |  |  | 3-wire (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NAV*1 | M9NA* ${ }^{\text {² }}$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\begin{gathered} \text { IC } \\ \text { circuit } \end{gathered}$ |  |
|  |  |  |  | 3-wire (PNP) |  |  |  | M9PAV*1 | M9PA* ${ }^{\text {¹ }}$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BAV*1 | M9BA*1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
| O- | - | Grommet | Yes | 3-wire (NPN equiv.) | - | 5 V | - | A96V | A96 | - | - | - | - | - | IC circuit | - |
| $\stackrel{\square}{\square}$ |  |  |  | 2-wire | 24 V | $12 \mathrm{~V}$ | 100 V | A93V*2 | A93 | - | $\bigcirc$ | - | - | - | - | Relay, PLC |
|  |  |  | No |  |  |  | 100 V or less | A90V | A90 | - | - | $\bigcirc$ | - | - | IC circuit |  |

[^0]* Auto switches are shipped together, (but not assembled).


| Size | Allowable kinetic energy (J) | Stable operational rotation time adjustment range (s/90 ${ }^{\circ}$ ) |
| :---: | :---: | :---: |
| 10 | 0.00025 | 0.7 to 5 |
| 15 | 0.00039 |  |
| 20 | 0.025 | 1 to 5 |
| 30 | 0.048 |  |
| 40 | 0.081 |  |

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

## Weight

| Size | (g) |  |
| :---: | :---: | :---: |
|  | $90^{\circ}$ | $180^{\circ}$ |
| $\mathbf{1 0}$ | 120 | 150 |
| $\mathbf{1 5}$ | 220 | 270 |
| 20 | 600 | 700 |
| $\mathbf{3 0}$ | 900 | 1100 |
| $\mathbf{4 0}$ | 1400 | 1600 |

[^1]
## Moisture

 Control Tube IDK SeriesWhen operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.
Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the IDK series in the Best Pneumatics No. 6.

Made to Order
(Refer to pages 318 to 332 for details.)

| Symbol | Specifications/Content | Applicable shatt type |
| :---: | :--- | :--- |
| - | Shaft type variation | $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}, \mathrm{J}, \mathrm{K}$ |
| XA1 to XA24 | Shaft pattern sequencing I | $\mathrm{S}, \mathrm{W}$ |
| XA31 to XA59 | Shaft pattern sequencing II | $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}, \mathrm{J}, \mathrm{K}$ |
| $\mathbf{X C 7}$ | Reversed shaft | $\mathrm{S}, \mathrm{W}, \mathrm{X}, \mathrm{T}, \mathrm{J}$ |
| $\mathrm{XC8}$ to XC11 | Change of rotating range |  |
| XC12 to XC15 | Change of angle adjustable <br> range $\left(0^{\circ} \text { to } 100^{\circ}\right)^{\prime \prime}$ | $\mathrm{S}, \mathrm{W}, \mathrm{Y}$ |

Among the symbols XC8 to XC21, only XC12 and XC16 are compatible with shaft types $X, Z, T, J$ and $K$.

Specifications

| Size | 10 | 15 | 20 | 30 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fluid | Air (Non-lube) |  |  |  |  |
| Max. operating pressure | 0.7 MPa |  | 1 MPa |  |  |
| Min. operating pressure | 0.15 MPa |  | 0.1 MPa |  |  |
| Ambient and fluid temperature | $0^{\circ}$ to $60^{\circ} \mathrm{C}$ (No freezing) |  |  |  |  |
| Cushion | Not attached |  |  |  |  |
| Angle adjustment range | Rotation end $\pm 5^{\circ}$ |  |  |  |  |
| Rotation angle | $80^{\circ}$ to $100^{\circ}, 170^{\circ}$ to $190^{\circ}$ |  |  |  |  |
| Port size | M5 x 0.8 |  | Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8 |  |  |
| Output (N•m)* | 0.30 | 0.75 | 1.8 | 3.1 | 5.3 |

## Allowable Kinetic Energy and Rotation Time Adjustment Range

* Output under the operating pressure at 0.5 MPa . Refer to page 305 for further information.


## CRQ2X Series

## Rotation Range

When pressurized from the port indicated by the arrow, the shaft will rotate in a clockwise direction.

## Rotation angle: $9 \mathbf{0}^{\circ}$



Rotation angle: $\mathbf{1 8 0}^{\circ}$


Construction

## Standard <br> Size 10/15



Component Parts

| No. | Description | Material |
| :---: | :--- | :---: |
| 1 | Body | Aluminum alloy |
| 2 | Cover | Aluminum alloy |
| 3 | Plate | Aluminum alloy |
| 4 | End cover | Aluminum alloy |
| 5 | Piston | Stainless steel |
| 6 | Size: 10,15 | Stainless steel |
|  | Size: $20,30,40$ | Chrome molybdenum steel |
| 7 | Seal retainer | Aluminum alloy |
| 8 | Bearing retainer | Aluminum alloy |
| 9 | Wear ring | Resin |
| 10 | Hexagon socket head cap screw | Stainless steel |
| 11 | Size: 10, 15 | Hexagon nut |
|  | Size: $20,30,40$ | Small hexagon nut |

## Standard

 Size 20/30/40

MSZ

Component Parts

| No. | Description |  | Material |
| :---: | :---: | :---: | :---: |
| 12 | Cross recessed screw No. 0 |  | Steel wire |
| 13 | Size: 10, 15 Cross | ecessed screw No. 0 | Steel wire |
|  | Size: 20, 30, 40 Cross | recessed screw |  |
| 14 | Hexagon socket head set screw |  | Chrome molybdenum steel |
| 15 | Bearing |  | Bearing steel |
| 16 | Size: 20, 30, 40 only | Parallel key | Carbon steel |
| 17 | Size: 20, 30, 40 only | Steel ball | Stainless steel |
| 18 | Type CS retaining ring |  | Stainless steel |
| 19 | Seal |  | NBR |
| 20 | Gasket |  | NBR |
| 21 | Piston seal |  | NBR |
| 22 | Seal washer |  | NBR |
| 23 | With auto switch only | Magnet | - |

Replacement Parts

| Description | Part no. |  |  |  | Note |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1 0}$ | $\mathbf{1 5}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ |  |  |
| Seal kit | $\mathrm{P} 473010-23$ | $\mathrm{P} 473020-23$ | $\mathrm{P} 473030-23$ | $\mathrm{P} 473040-23$ | $\mathrm{P} 473050-23$ | A set of above numbers (9), (19), (20), (21) and (22) |

Parts included in Seal Kit

| No. | Description | Qty. | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{9}$ | Wear ring | 4 |  |
| $\mathbf{1 9}$ | Seal | 1 |  |
| $\mathbf{2 0}$ | Gasket for cover | 2 | Size: 10,15 |
|  | Gasket for end cover | 1 |  |
|  | Gasket | 4 | Size: $20,30,40$ |
| $\mathbf{2 1}$ | Piston seal | 4 |  |
| $\mathbf{2 2}$ | Seal washer | 2 |  |

* A set includes all parts above.

A grease pack ( 10 g ) is included. When only a grease pack is needed, order with the following part number.
Replacement parts/Grease pack part no: P523010-21 (10 g)

## CRQ2X Series

## Construction

With auto switch
Size 10/15


With auto switch
Size 20/30/40


Dimensions

## Size 10/15




With double shaft



| Size | Rotation angle | A | AU* | B | BA | $\mathbf{B B}$ | $\mathbf{B C}$ | BF | BG | BU | D <br> $(\mathbf{g 6})$ | DD <br> $(\mathbf{h 9})$ | $\mathbf{H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ | $90^{\circ}, 180^{\circ}$ | 42.4 | $(8.5)$ | 29 | 8.7 | 17.2 | 6.7 | 2.2 | 8.2 | 16.7 | 5 | 12 | 18 |
| $\mathbf{1 5}$ | $90^{\circ}, 180^{\circ}$ | 53.6 | $(9.5)$ | 31 | 9.2 | 26.4 | 10.6 | - | 9 | 23.1 | 6 | 14 | 20 |


| Size | Rotation angle | W | Q | S | US | UW | N | M | TA | TC | TD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | $90^{\circ}$ | 4.5 | 17 | 56.4 | 35 | 44 | 6 | 9 | 15.5 | 8 | 15.4 |
|  | $180^{\circ}$ |  |  | 68.9 |  |  |  |  |  |  |  |
| 15 | $90^{\circ}$ | 5.5 | 20 | 65.2 | 40 | 50 | 7 | 10 | 16 | 9 | 17.6 |
|  | $180^{\circ}$ |  |  | 82.2 |  |  |  |  |  |  |  |

* The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.


## CRQ2X Series

## Dimensions

## Size 20/30/40



With double shaft


| Size | Rotation angle | A | AU* | B | BA | BB | BC | BD | BE | BU | $\underset{(\mathrm{g} 6)}{\mathrm{D}}$ | $\begin{aligned} & \hline \text { DD } \\ & \text { (h9) } \end{aligned}$ | F | H | J | JA | JB | JJ | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | $90^{\circ}, 180^{\circ}$ | 63 | (11) | 50 | 14 | 34 | 14.5 | - | - | 30.4 | 10 | 25 | 2.5 | 30 | M8 $\times 1.25$ | 11 | 6.5 | - | 3 |
| 30 | $90^{\circ}, 180^{\circ}$ | 69 | (11) | 68 | 14 | 39 | 16.5 | 49 | 16 | 34.7 | 12 | 30 | 3 | 32 | M10 $\times 1.5$ | 14 | 8.5 | M5 $\times 0.8$ depth 6 | 4 |
| 40 | $90^{\circ}, 180^{\circ}$ | 78 | (13) | 76 | 16 | 47 | 18.5 | 55 | 16 | 40.4 | 15 | 32 | 3 | 36 | M10 $\times 1.5$ | 14 | 8.6 | M6 $\times 1$ depth 7 | 5 |


| Size | Rotation angle | Q | S | W | Key dimensions |  | US | TA | TB | TC | TD | $\begin{gathered} \text { TF } \\ \text { (H9) } \end{gathered}$ | $\begin{gathered} \text { TG } \\ \text { (H9) } \end{gathered}$ | TL | UW | G | M | N | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | b | L1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | $90^{\circ}$ | 29 | 104.4 | 11.5 | $4_{-0.03}^{0}$ | 20 | 59 | 24.5 | 1 | 13.5 | 27 | 4 | 4 | 2.5 | 74 | $8{ }_{-0.1}^{0}$ | 15 | 11 | $9.6{ }_{-0.1}^{0}$ |
|  | $180^{\circ}$ |  | 129.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 30 | $90^{\circ}$ | 33 | 122 | 13.5 | $4_{-0.03}^{0}$ | 20 | 65 | 27 | 2 | 19 | 36 | 4 | 4 | 2.5 | 83 | $10_{-0.1}^{0}$ | 18 | 13 | $11.4{ }_{-0.1}^{0}$ |
|  | $180^{\circ}$ |  | 153 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 40 | $90^{\circ}$ | 37 | 139.3 | 17 | $5{ }_{-0.03}^{0}$ | 25 | 73 | 32.5 | 2 | 20 | 39.5 | 5 | 5 | 3.5 | 93 | $11_{-0.1}^{0}$ | 20 | 15 | $14 \stackrel{0}{-0.1}$ |
|  | $180^{\circ}$ |  | 177 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

[^2] ** In addition to Rc 1/8, G 1/8, NPT 1/8 and NPTF $1 / 8$ are also available.

## Low-Speed Compact Rotary Actuator <br> Rack \& Pinion Type <br> CRQ2X Series

## Unit Used as Flange Mount

The $L$ dimensions of this unit are shown in the below table. When hexagon socket head cap bolt of the JIS standard is used, the head of the bolt will recess into the groove of actuator.


| Size | $\mathbf{L}$ | Screw |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | 13 | M4 |
| $\mathbf{1 5}$ | 16 | M4 |
| $\mathbf{2 0}$ | 22.5 | M6 |
| $\mathbf{3 0}$ | 24.5 | M8 |
| $\mathbf{4 0}$ | 28.5 | M8 |

## Auto Switch Proper Mounting Position (at Rotation End Detection)



| Size | Rotation angle | Solid state switch |  |  |  | Reed switch |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | Operating angle ( $\theta \mathrm{m}$ ) | $\begin{array}{\|l} \hline \text { Hystere- } \\ \text { sis } \\ \text { angle } \end{array}$ | A | B | Operating angle ( $\theta \mathrm{m}$ ) | $\begin{aligned} & \text { Hystere- } \\ & \text { sis } \\ & \text { angle } \end{aligned}$ |
| 10 | $90^{\circ}$ | 19 | 25.5 | $61^{\circ}$ | $5^{\circ}$ | 15 | 21.5 | $63^{\circ}$ | $12^{\circ}$ |
|  | $180^{\circ}$ | 22 | 35 |  |  | 18 | 31 |  |  |
| 15 | $90^{\circ}$ | 22.5 | 31 | $47^{\circ}$ | $4^{\circ}$ | 18.5 | 27 | $52^{\circ}$ | $9^{\circ}$ |
|  | $180^{\circ}$ | 26.5 | 43.5 |  |  | 22.5 | 39.5 |  |  |
| 20 | $90^{\circ}$ | 40 | 52.5 | $40^{\circ}$ | $4^{\circ}$ | 36 | 48.5 | $41^{\circ}$ | $9^{\circ}$ |
|  | $180^{\circ}$ | 46 | 71.5 |  |  | 42 | 67.5 |  |  |
| 30 | $90^{\circ}$ | 47 | 63 | $29^{\circ}$ | $2^{\circ}$ | 43 | 59 | $32^{\circ}$ | $7^{\circ}$ |
|  | $180^{\circ}$ | 55 | 86 |  |  | 51 | 82 |  |  |
| 40 | $90^{\circ}$ | 54 | 73 | $24^{\circ}$ | $2^{\circ}$ | 50 | 69 | $24^{\circ}$ | $5^{\circ}$ |
|  | $180^{\circ}$ | 63.5 | 101.5 |  |  | 59.5 | 97.5 |  |  |

Operating angle $\theta \mathbf{m}$ : Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft
Hysteresis angle: Value of the auto switch hysteresis as represented by angle

Note) Since the above values are only provided as a guideline, they are not guaranteed.
In the actual setting, adjust them after confirming the auto switch operating condition.

## CRQ2X Series

1 Shaft Type Variation, Four Chamfers (Size 20/30/40) (Dimension parts differentitrom the standard contom to the genearal teearane) Shaft Type: X, Z

## Specifications



| $\mathbf{X}$ | Single shaft with four chamfers |
| :--- | :---: |
| $\mathbf{Z}$ | Double shaft with four chamfers |

## Dimensions





## Specifications

| Fluid | Air (Non-lube) |
| :--- | :---: |
| Applicable shaft type | Double shaft with key (Y) |
| Applicable size | $20,30,40$ |
| Max. operating pressure | 1.0 MPa |
| Min. operating pressure | 0.1 MPa |
| Cushion | Not attached |
| Rotating angle | $80^{\circ}$ to $100^{\circ}, 170^{\circ}$ to $190^{\circ}$ |
| Port size | Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$ |
| Auto switch | Mountable |

## Dimensions

3 Shaft Type Variation/Without Keyway (Dimension parts dififerent trom the standard contiom to the general tolerance.) Shaft Type: T, J, K


## Specifications

| Fluid | Air (Non-lube) |  |
| :--- | :---: | :---: |
| Applicable shaft type | Single round shaft (T), Double shaft (J), Double round shaft (K) |  |
| Applicable size | 10,15 | $20,30,40$ |
| Max. operating pressure | 0.7 MPa | 1.0 MPa |
| Min. operating pressure | 0.15 MPa | 0.1 MPa |
| Cushion | Not attached |  |
| Rotating angle | $80^{\circ}$ to $100^{\circ}, 170^{\circ}$ to $190^{\circ}$ |  |
| Port size | M5 $\times 0.8$ | Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$ |
| Auto switch | Mountable |  |

Dimensions


Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter.) Please contact SMC for a specification sheet when placing an order.

Symbol
Shaft Pattern Sequencing I
-XA1 to XA24
Applicable shaft type: S, W

## How to Order



## Chart 1. Combination between -XA $\square$ and -XA $\square$ (S, W shaft)



## Combination Chart of Made to Order

Chart 2. Combination between -XA $\square$ and -XC $\square$ (Made to Order/ Details of -XC $\square$, refer to page 328.)

| Symbol | Description | Applicable size | $\begin{aligned} & \hline \text { Combination } \\ & \hline \text { XA1 to XA24 } \\ & \hline \end{aligned}$ | Symbol | Description | Applicable size | $\begin{gathered} \hline \text { Combination } \\ \hline \text { XA1 to XA24 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XC 7 | Reversed shaft | $\begin{gathered} 10,15 \\ 20,30,40 \end{gathered}$ | - | XC18 | Change of rotating range | 20, 30, 40 | $\bigcirc$ |
| XC 8 | Change of rotating range |  | - | XC19 |  |  | - |
| XC 9 |  |  | - | XC20 | Change in angle adjustable |  | $\bigcirc$ |
| XC10 |  |  | - | XC21 | range $90^{\circ}$ to $190^{\circ}$ |  | - |
| XC11 |  |  | - | * Chart 5. Refer to page 328 for combination available between -XC $\square$ and -XC $\square$. |  |  |  |
| XC12 | Change in angle adjustable range $0^{\circ}$ to $100^{\circ}$ |  | - |  |  |  |  |  |  |
| XC13 |  |  | - |  |  |  |  |  |  |
| XC14 |  |  | - |  |  |  |  |  |  |
| XC15 |  |  | - |  |  |  |  |  |  |
| XC16 | Change in angle adjustable range $90^{\circ}$ to $190^{\circ}$ |  | - |  |  |  |  |  |  |
| XC17 |  |  | - |  |  |  |  |  |  |
| 318 |  |  |  |  | NC |  |  |

## Additional Reminders

1. Enter the dimensions within a range that allows for additional machining.
2. Unless indicated otherwise, the dimensional tolerance conforms to the general tolerance. SMC will make appropriate arrangements.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.
M3 x 0.5, M4 x 0.7, M5 x 0.8
M6 $\times 1$
5. Enter the desired figures in the [--_ portion of the diagram.
6. XA1 to XA24 are the standard products that have been additionally machined.
7. Chamfer face of the parts machining additionally is C0.5.

## Symbol: A3

The long shaft can be further shortened by machining male threads into it
(If shortening the shaft is not required, indicate " $*$ " for dimension X .)

- Applicable shaft types: S, W


|  |  |  | $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| Size | X | L1 max | Q1 |
| $\mathbf{1 0}$ | 9 to 18 | $X-4$ | M5 |
| $\mathbf{1 5}$ | 10 to 20 | X-4 | M6 |

## Symbol: A6

The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Size | Y | L2 max | D2 |
| $\mathbf{1 0}$ | 1 to 9 | $Y$ | $\varnothing 3.5$ to $\varnothing 4.9$ |
| 15 | 1 to 10 | $Y$ | $\varnothing 3.5$ to $\varnothing 5.9$ |

## Symbol: A1

Machine female threads into the long shaft. The maximum dimension L1 is, as a rule, twice the thread
size (Example) For M3: L1 $=6$

- Applicable shaft types: S, W


Size 10, 15


Size 20, 30, 40
(mm)

| (mm) |  |
| :---: | :---: |
| Size | Q1 |
| 10 | M3 |
| 15 | M3, M4 |
| 20 | M3, M4 |
| 30 | M3, M4, M5 |
| 40 | M4, M5, M6 |

## Symbol: A4

The short shaft can be further shortened by machining male threads into it
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| (mm) |  |  |  |
| Size | Y | L2 max | Q2 |
| $\mathbf{1 0}$ | $\mathbf{7}$ to 9 | $\mathrm{Y}-2$ | M 5 |
| $\mathbf{1 5}$ | 8 to 10 | $\mathrm{Y}-3$ | M 6 |

## Symbol: A7

The long shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension X.)
(If not specifying dimension C1, indicate "*" instead.)

- Applicable shaft types: S, W



## Symbol: A2

Machine female threads into the short shaft. The maximum dimension L2 is, as a rule, twice the thread size. (Example) For M4: L2 $=8$

- Applicable shaft types: S, W


Size 10, 15
Size 20, 30, 40
(mm)

| (mm) |  |
| :---: | :---: |
| Size | Q2 |
| $\mathbf{1 0}$ | M3 |
| $\mathbf{1 5}$ | M3, M4 |
| $\mathbf{2 0}$ | M3, M4 |
| $\mathbf{3 0}$ | M3, M4, M5 |
| $\mathbf{4 0}$ | M4, M5, M6 |

## Symbol: A5

The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X .)
(If not specifying dimension C 1 , indicate " $*$ " instead.)

- Applicable shaft types: S, W
- Equal dimensions are indicated by the same marker.


|  |  |  |  |  | (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Size | X | L1 max | D1 |  |  |
| $\mathbf{1 0}$ | 3 to 18 | $X-2$ | $\varnothing 3.5$ to $\varnothing 4.9$ |  |  |
| $\mathbf{1 5}$ | 3 to 20 | $X-2$ | $\varnothing 3.5$ to $\varnothing 5.9$ |  |  |

## Symbol: A8

The short shaft can be further shortened by machining it into a stepped round shaft with male threads. (If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

- Applicable shaft type: W


|  | (mm) |  |  |
| :---: | :---: | :---: | :---: |
| Size | Y | L2 max | Q2 |
| $\mathbf{1 0}$ | 6 to 9 | Y | M3, M4 |
| $\mathbf{1 5}$ | 7.5 to 10 | Y | M3, M4, M5 |

# CRQ2X Series (Size: 10, 15, 20, 30, 40) Simple Specials: <br> -XA1 to -XA24: Shaft Pattern Sequencing I 

Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter.) Please contact SMC for a specification sheet when placing an order.

## Shaft Pattern Sequencing I

## Additional Reminders

1. Enter the dimensions within a range that allows for additional machining
2. Unless indicated otherwise, the dimensional tolerance conforms to the general tolerance. SMC will make appropriate arrangements.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.
M3 x 0.5, M4 x 0.7, M5 x 0.8
M6 $\times 1$
5. Enter the desired figures in the [--_ portion of the diagram.
6. XA9 to XA24 are the standard products that have been additionally machined.
7. Chamfer face of the parts machining additionally is C0.5.


## Symbol: A14

A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter

- The maximum dimension L1 is, as a rule, twice the thread size.
(Exead size) For M3: L1 $=6$
(Example) For M3: L1 $=6$
- Applicable shaft types: S, W



## Symbol: A9

The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side. (If shortening the shaft is not required, indicate "*" for dimension X .)

- Applicable shaft types: S, W


| Size | $\mathbf{X}$ | L1 |
| :---: | :---: | :---: |
| 10 | 8 to18 | $\{10-(18-X)\}$ to $(X-2)$ |
| 15 | 10 to 20 | $\{10-(20-X)\}$ to $(X-2)$ |

## Symbol: A12

The short shaft can be further shortened by machining a double-sided chamfer on to it.

- Since L2 is a standard chamfer, dimension E2 is 0.5 or more.
(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L 2 and Y dimensions.)



## Symbol: A15

A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- The maximum dimension L 2 is, as a rule, twice the thread size. (Example) For M4: L2 $=8$
- Applicable shaft types; S, W



## Symbol: A10

The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W


| 15 | 3 to 10 | $7-(10-Y)$ to $Y$ |
| :--- | :--- | :--- |

Shaft with through-hole
Minimum machining diameter for d 1 is 0.1 .

- Applicable shaft types: S, W


Size 10, 15


Size 20, 30, 40


## Symbol: A16

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shatts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size. (Example) For M5: L1 = 10
- Applicable shaft types: S, W
- Applicable shaft types: $\mathrm{S}, \mathrm{W}$ 噱


Symbol


# CRQ2X Series (Size: 10, 15, 20, 30, 40) <br> Simple Specials: <br> -XA31 to -XA59: Shaft Pattern Sequencing II 

Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter.) Please contact SMC for a specification sheet when placing an order.

## Shaft Pattern Sequencing II

Applicable shaft type: X, Y, Z, T, J and K

How to Order


Symbol
-XA31 to XA59

## Combination Chart of Simple Specials for Tip End Shape

Chart 3. Combination between -XA $\square$ and -XA $\square$ (X, Y, Z, T, J, K shafts)


Combination Chart of Made to Order

Chart 4. Combination between -XA $\square$ and -XC $\square$ (Made to Order/Details of -XC $\square$, refer to page 328.)

| Symbol | Description | Applicable size | Combination |
| :---: | :---: | :---: | :---: |
|  |  |  | XA31 to XA59 |
| XC 7 | Reversed shaft | $\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$ | - |
| XC 8 | Change of rotating range |  | $\bullet$ |
| XC 9 |  |  | - |
| XC10 |  |  | - |
| XC11 |  |  | $\bigcirc$ |
| XC12 | Change in angle adjustable range $0^{\circ}$ to $100^{\circ}$ |  | - |
| XC13 |  |  | - |
| XC14 |  |  | $\bigcirc$ |
| XC15 |  |  | $\bigcirc$ |
| XC16 | Change in angle adjustable range $90^{\circ}$ to $190^{\circ}$ |  | - |
| XC17 |  |  | - |
| XC18 | Change of rotating range | 20, 30, 40 | - |
| XC19 |  |  | - |
| XC20 | Change in angle adjustable range $90^{\circ}$ to $190^{\circ}$ |  | $\bigcirc$ |
| XC21 |  |  | - |

[^3]
# CRQ2X Series (Size: 10, 15, 20, 30, 40) <br> Simple Specials: -XA31 to -XA59: Shaft Pattern Sequencing II 

Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter.) Please contact SMC for a specification sheet when placing an order.

## Shaft Pattern Sequencing II

## Additional Reminders

1. Enter the dimensions within a range that allows for additional machining.
2. Unless indicated otherwise, the dimensional tolerance conforms to the general tolerance SMC will make appropriate arrangements.
3 . The length of the unthreaded portion is 2 to 3 pitches.
3. Unless specified otherwise, the thread pitch is based on coarse metric threads.
M3 $\times 0.5$, M $4 \times 0.7$, M5 x 0.8
M6×1
4. Enter the desired figures in the [--] portion of the diagram.
5. XA31 to XA59 are the standard products that have been additionally machined.
6. Chamfer face of the parts machining additionally is C 0.5 .

## Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule,
twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft types: J, K, T



## Symbol: A36

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule,
twice the thread size.
(Example) For M4: L2 $=8$
- Applicable shaft types: J, Z



## Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule,
twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft type: $Y$



## Symbol: A34

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule,
twice the thread size.
(Example) For M5: L2 $=10$
- Applicable shaft types: K, T, X

(mm)

| (mm) |  |
| :---: | :--- |
| Size | Q2 |
| 10 | M3 |
| 15 | M3, M4 |
| $\mathbf{2 0}$ | M3, M4, M5, M6 |
| 30 | M4, M5, M6, M8 |
| $\mathbf{4 0}$ | M4, M5, M6, M8, M10 |

## Symbol: A37

The long shaft can be further shortened by machining it into a stepped round shaft. (If shortening the shaft is not required indicate "*" for dimension $X$ ) (If not specifying required, indicate ** for dimension X.) (if not specifying
dimension C 1 , indicate " $*$ " instead.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.



## Symbo: A32

Machine female threads into the short shaft.

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8$
- Applicable shaft type: Y



## Symbol: A35

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule,
twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft types: X, Z


| (mm) |  |
| :---: | :--- |
| Size | Q1 |
| $\mathbf{2 0}$ | $\mathrm{M} 3, \mathrm{M} 4$ |
| $\mathbf{3 0}$ | $\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$ |
| $\mathbf{4 0}$ | $\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$ |

## Symbol: A38

The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension $Y$ )
(If not specifying dimension C 2 , indicate "*" instead.)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.


Symbol
-XA31 to XA48


## Symbol: A45

The long shaft can be further shortened by machining a middle-cut chamfer into it.
(If shortening the shaft is not required, indicate "*"
for dimension X.)
(The position is that of the standard flat at the keyway
portion.)

(mm)

| Size | $\mathbf{X}$ | W1 | L1 max | L3 max |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ | 6 to 18 | 0.5 to 1.5 | $\mathrm{X}-2$ | $\mathrm{~L} 1-1$ |
| $\mathbf{1 5}$ | 6.5 to 20 | 0.5 to 1.5 | $\mathrm{X}-2$ | $\mathrm{~L} 1-1$ |
| $\mathbf{2 0}$ | 9.5 to 30 | 1 to 2 | $\mathrm{X}-2.5$ | $\mathrm{~L} 1-2$ |
| $\mathbf{3 0}$ | 11.5 to 32 | 1 to 2 | $\mathrm{X}-3$ | $\mathrm{~L} 1-2$ |
| $\mathbf{4 0}$ | 12.5 to 36 | 1 to 2 | $\mathrm{X}-3$ | $\mathrm{~L} 1-2$ |



## Symbol: A46

The short shaft can be further shortened by machining a middle-cut chamfer into it.
(If shortening the shaft is not required, indicate "*"
for dimension Y.)
(The position is that of the standard flat at the keyway portion.)

- Applicable shaft type: K



## Symbol: A41

Shaft with through-hole
Minimum machining diameter for d 1 is 0.1 .

- Applicable shaft types: J, X, Z




## Symbol: A44

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes. - The maximum dimension L1 is, as a rule, twice the thread size.

- Applicable shaft types: J, X, Z
- Applicable shaft types: $\mathrm{J}, \mathrm{X}, \mathrm{Z}$
$\bullet$


## Symbol: A48

Shorten the long shaft.

- Applicable shaft type: Y


Size 20, 30, 40


# CRQ2X Series (Size: 10, 15, 20, 30, 40) <br> Simple Specials: -XA31 to -XA59: Shaft Pattern Sequencing II 

Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter.) Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II


Symbol
-XA49 to XA59


## CRQ2X Series

Made to Order Specifications 1
Please contact SMC for detailed dimensions, specifications and lead times.

How to Order


Combination Chart of Made to Order

Chart 5. Combination between -XC $\square$ and -XC $\square$

| Symbol | Description | Applicable size | Combination |
| :---: | :---: | :---: | :---: |
| XC7 | Reversed shaft | $\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$ | XC 7 |
| $\begin{gathered} \text { XC8 } \\ \text { to } \\ \text { XC11 } \end{gathered}$ | Change of rotating range |  | $\bigcirc$ |
| $\begin{aligned} & \mathrm{XC12} \\ & \text { to } \\ & \mathrm{XC15} \end{aligned}$ | Change in angle adjustable range $0^{\circ}$ to $100^{\circ}$ |  | $\bigcirc$ |
| XC16 | Change in angle adjustable range $90^{\circ}$ to $190^{\circ}$ |  | $\bigcirc$ |
| XC17 |  |  |  |
| XC18 | Change of rotating range | 20, 30, 40 | $\bigcirc$ |
| XC19 |  |  |  |
| XC20 | Change in angle adjustable range $90^{\circ}$ to $190^{\circ}$ |  |  |




Size 10, 15
Size 20, 30, 40

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Size | $\mathbf{M}$ | (mm) |  |  |  |
| $\mathbf{1 0}$ | 10 | 17 | $(-)^{*}$ |  |  |
| $\mathbf{1 5}$ | 11 | 19 | $(-)^{*}$ |  |  |
| $\mathbf{2 0}$ | 16.5 | $28.5(19.5)^{*}$ |  |  |  |
| $\mathbf{3 0}$ | 20 | 30 | $(22)^{*}$ |  |  |
| $\mathbf{4 0}$ | 22 | 34 | $(25)^{*}$ |  |  |
| * For X shaft |  |  |  |  |  |

# CRQ2X Series <br> Made to Order Specifications 2 

Please contact SMC for detailed dimensions, specifications and lead times.

Symbol

## 2 Change of Rotating Range

CRQ2XB CDRQ2XB

$$
\text { Refer to "How to Order" on page 308. }-x \text { C8 }
$$

Specifications
Applicable shaft type S, W, Y
-Symbol
-XC8 to XC11, XC18/XC19

## Additional Reminders

The rotation starting point shows the positions of one flat chamfering and the key groove when pressurized to the connecting port (B).

| Symbol: C8 | Symbol: C9 | Symbol: C10 |
| :---: | :---: | :---: |
| Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$. <br> Rotating range is changed. Rotation angle is at $90^{\circ} \pm 10^{\circ}$. The rotation starting point is on the perpendicular line (down). <br> The figure shows the view from the long shaft end. | Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$. <br> Rotating range is changed. Rotation angle is at $90^{\circ} \pm 10^{\circ}$. <br> The rotation starting point is on the horizontal line (left). <br> The figure shows the view from the long shaft end. | Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$. <br> Rotating range is changed. Rotation angle is at $90^{\circ} \pm 10^{\circ}$. <br> The rotation starting point is on the perpendicular line (up). <br> The figure shows the view from the long shaft end. |
| Symbol: C11 | Symbol: C18 | Symbol: 19 |
| Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$. <br> Rotating range is changed. Rotation angle is at $180^{\circ} \pm 10^{\circ}$ <br> The rotation starting point is on the horizontal line (left). <br> The figure shows the view from the long shaft end. | Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$. <br> Rotating range is changed. Rotation angle is at $180^{\circ} \pm 10^{\circ}$ <br> The rotation starting point is on the perpendicular line (down). | Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$. <br> Rotating range is changed. Rotation angle is at $180^{\circ} \pm 10^{\circ}$. <br> The rotation starting point is on the perpendicular line (up). |

3 Change of Angle Adjustable Range ( $0^{\circ}$ to $100^{\circ}, 90^{\circ}$ to $190^{\circ}$ ) - $\times$ C12 to $\mathrm{XC17}, \mathrm{XC20/XC21}$


## CRQ2X Series <br> Made to Order Specifications 3

Please contact SMC for detailed dimensions, specifications and lead times.


Stainless steel is used as a substitute material for standard parts when used under conditions with a possibility of oxidization or decay.

| Fluid | Air (Non-lube) |
| :--- | :---: |
| Applicable shaft type | $\mathrm{S}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}, \mathrm{J}, \mathrm{K}$ |
| Applicable size | $20,30,40$ |
| Max. operating pressure | 1.0 MPa |
| Min. operating pressure | 0.1 MPa |
| Cushion | Not attached |
| Rotation range | $80^{\circ}$ to $100^{\circ}, 170^{\circ}$ to $190^{\circ}$ |
| Stainless steel part | Shaft, Parallel key |
| Port size | Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$ |
| Auto switch | Mountable |

## Low-Speed Rotary Table Rack \& Pinion Type MSQX Series

 Size: 10, 20, 30, 50How to Order


Applicable Auto Switches/Refer to pages 797 to 850 for detailed auto switch specification.

| $\stackrel{\otimes 0}{\stackrel{\circ}{\gtrless}}$ | Special function | Electrical entry |  | Wiring (Output) | Load voltage |  |  | Auto switch model |  | Lead wire length (m) ${ }^{*}$ |  |  |  | Pre-wired connector | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | DC |  | AC | Perpendicular | In-line | $\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \end{array}$ | $\begin{gathered} \hline 1 \\ (M) \end{gathered}$ | $\begin{gathered} 3 \\ (L) \end{gathered}$ | $\begin{gathered} 5 \\ (Z) \end{gathered}$ |  |  |  |
|  |  | Grommet | Yes | 3-wire (NPN) | 24 V | $5 \mathrm{~V}, 12 \mathrm{~V}$ | - | M9NV | M9N | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\underset{\text { circuit }}{\text { IC }}$ | Relay, PLC |
|  | - |  |  | 3-wire (PNP) |  |  |  | M9PV | M9P | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BV | M9B | - | - | - | $\bigcirc$ | $\bigcirc$ | - |  |
|  | Diagnostic indication (2-color indicator) |  |  | 3-wire (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NWV | M9NW | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  |  |  |  | 3-wire (PNP) |  |  |  | M9PWV | M9PW | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BWV | M9BW | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |  |
|  | Water resistant (2-color indicator) |  |  | 3-wire (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NAV*1 | M9NA* ${ }^{\text {1 }}$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  |  |  |  | 3-wire (PNP) |  |  |  | M9PAV*1 | M9PA*1 | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BAV*1 | M9BA*1 | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |  |
|  | - | Grommet | Yes | 3-wire <br> (NPN equiv.) | - | 5 V | - | A96V | A96 | - | - | - | - | - | IC circuit | - |
| $\mathbb{C l}_{0}^{\infty}$ |  |  |  | 2-wire | 24 V | 12 V | 100 V | A93V*2 | A93 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | - | - | Relay, PLC |
|  |  |  | No |  |  |  | 100 V or less | A90V | A90 | - | - | $\bigcirc$ | - | - | IC circuit |  |

[^4]
## MSQX Series

Specifications


| Size |  | 10 | 20 | 30 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fluid |  | Air (Non-lube) |  |  |  |
| Max. operating pressure |  | 1 MPa |  |  |  |
| Min. operating pressure |  | 0.1 MPa |  |  |  |
| Ambient and fluid temperature |  | $0^{\circ}$ to $60^{\circ} \mathrm{C}$ (No freezing) |  |  |  |
| Cushion |  | Not attached |  |  |  |
| Angle adjustment range |  | 0 to $190^{\circ}$ |  |  |  |
| Maximum rotation angle |  | $190^{\circ}$ |  |  |  |
| Port size | End port | M5 x 0.8 |  | Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$ |  |
|  | Side port | M5 x 0.8 |  |  |  |
| Output (N•m)* |  | 0.89 | 1.8 | 2.7 | 4.6 |

* Output under the operating pressure at 0.5 MPa . Refer to page 305 for further information.

Symbol


## Made to Order

Refer to page 340 for details.

| Symbol | Specifications/Content |
| :---: | :---: |
| $-\mathbf{X 1 5} \square$ | With external stopper |



## Allowable Kinetic Energy and Rotation Time Adjustment Range

| Size | Allowable kinetic energy $(\mathrm{J})$ | Stable operational rotation time adjustment range $\left(\mathrm{s} / 90^{\circ}\right)$ |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | 0.007 |  |
| $\mathbf{2 0}$ | 0.025 |  |
| $\mathbf{3 0}$ | 0.048 |  |
| $\mathbf{5 0}$ | 0.081 |  |

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

## Weight

| Size | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| Basic | 500 | 940 | 1230 | 1990 |

* Not including the weight of auto switch.


## Low-Speed Rotary Table Rack \& Pinion Type <br> MSQX Series

## Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.
- By adjusting the adjustment bolt, the rotation end can be set within the range shown in the drawing for the desired rotation angle.


With Adjustment Bolt

| Size | Adjustment angle per rotation of <br> angle adjustment screw |
| :---: | :---: |
| $\mathbf{1 0}$ | $10.2^{\circ}$ |
| $\mathbf{2 0}$ | $7.2^{\circ}$ |
| $\mathbf{3 0}$ | $6.5^{\circ}$ |
| $\mathbf{5 0}$ | $8.2^{\circ}$ |



Note) - The drawing shows the rotation range of the positioning pin hole.

- The pin hole position in the drawing shows the counter-clockwise rotation end when the adjustment bolts $A$ and $B$ are tightened equally and the rotation is adjusted $180^{\circ}$.


## Rotation Angle Range Example

- Various rotation ranges are possible as shown in the drawings below using adjustment bolts A and B. (The drawings also show the rotation ranges of the positioning pin hole.)



## MSQX Series

Table Displacement (Reference values)

- The following graphs show the displacement at point A, which is 100 mm apart from the center of rotation, where the load is applied.



MSQXB20A




## Low-Speed Rotary Table <br> Rack \& Pinion Type MSQX Series

Construction



Component Parts

| No. | Description | Material |
| :---: | :--- | :---: |
| 1 | Body | Aluminum alloy |
| 2 | Cover | Aluminum alloy |
| 3 | Plate | Resin |
| 4 | Seal | NBR |
| 5 | End cover | Aluminum alloy |
| 6 | Piston | Stainless steel |
| 7 | Pinion | Chrome molybdenum steel |
| 8 | Hexagon small nut | Steel wire |
| 9 | Adjustment bolt | Chrome molybdenum steel |
| 10 | Gasket | NBR |
| 11 | Gasket | NBR |
| 12 | Table | Aluminum alloy |
| 13 | Bearing retainer | Aluminum alloy |
| 14 | Magnet | - |

* Individual part cannot be shipped.


## Replacement Parts

| Description | Part no. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 |  |  | 20 |  |  | 30 |  |  | 50 |  |  |
| Seal kit | P523010-20 |  |  | P523020-20 |  |  | P523030-20 |  |  | P523040-20 |  |  |
| Parts included in seal kit | No. | Description | Qty. |
|  | 4 | Seal | 1 |
|  | 10 | Gasket | 1 |
|  | 11 | Gasket | 1 |
|  | 15 | Wear ring | 4 |
|  | 16 | Piston seal | 4 |
|  | 25 | Seal washer | 2 |

[^5]Component Parts

| No. | Description |  | Material |
| :---: | :---: | :---: | :---: |
| 15 | Wear ring |  | Resin |
| 16 | Piston seal |  | NBR |
| 17 | Bearing |  | Bearing steel |
| 18 | Bearing |  | Bearing steel |
| 19 | Cross recessed screw No. 0 |  | Steel wire |
| 20 | Cross recessed screw | Size: 10 | Stainless steel |
|  | Hexagon this socket head bolt | Size: 20 to 50 | Chrome molybdenum steel |
| 21 | Hexagon socket head cap screw |  | Stainless steel |
| 22 | Hexagon socket head cap screw |  | Stainless steel |
| 23 | Push nut |  | Stainless steel |
| 24 | Parallel pin |  | Carbon steel |
| 25 | Seal washer |  | NBR |
| 26 | Plug |  | Steel wire |

## MSQX Series

Dimensions
Basic: MSQXB $\square A$


| Size | AA | A | AU | AV | AW | AX | AY | BA | BB | BC | BD | BE | CA | CB | D | DD | DE | DF | DG | FA | FB | FC | FD | H | J | JA | JB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 55.4 | 50 | 6.6 | 20 | 15.5 | 12 | 4 | 9.5 | 34.5 | 27.8 | 60 | 27 | 4.5 | 28.5 | 45h9 | 46h9 | 20H9 | 6 | 15H9 | 8 | 4 | 3 | 4.5 | 13 | 6.8 | 11 | 6.5 |
| 20 | 70.8 | 65 | 7.6 | 27.5 | 16 | 14 | 5 | 12 | 46 | 30 | 76 | 34 | 6 | 30.5 | 60h9 | 6179 | 28H9 | 9 | 17H9 | 10 | 6 | 2.5 | 6.5 | 17 | 8.6 | 14 | 8.5 |
| 30 | 75.4 | 70 | 7.6 | 29 | 18.5 | 14 | 5 | 12 | 50 | 32 | 84 | 37 | 6.5 | 33.5 | 65h9 | 67h9 | 32H9 | 12 | 22H9 | 10 | 4.5 | 3 | 6.5 | 17 | 8.6 | 14 | 8.5 |
| 50 | 85.4 | 80 | 10 | 38 | 22 | 19 | 6 | 15.5 | 63 | 37.5 | 100 | 50 | 10 | 37.5 | 75h9 | 77h9 | 35 H 9 | 13 | 26H9 | 12 | 5 | 3 | 7.5 | 20 | 10.5 | 18 | 10.5 |


| Size | JC | JD | JJ | JU | P | Q | S | SD | SE | SF | SU | UU | WA | WB | WC | WD | WE | WF | XA | XB | XC | YA | YB | YC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | M $8 \times 1.25$ | 12 | M5 $\times 0.8$ | M $8 \times 1$ | M5 x 0.8 | 34 | 92 | 9 | 13 | 45 | 17.7 | 47 | 15 | 3H9 | 3.5 | M5 x 0.8 | 8 | 32 | 27 | 3H9 | 3.5 | 19 | 3H9 | 3.5 |
| 20 | $\mathrm{M} 10 \times 1.5$ | 15 | M6 $\times 1$ | M10 $\times 1$ | M5 $\times 0.8$ | 37 | 117 | 10 | 12 | 60 | 25 | 54 | 20.5 | 4H9 | 4.5 | M6 $\times 1$ | 10 | 43 | 36 | 4H9 | 4.5 | 24 | 4H9 | 4.5 |
| 30 | M10 $\times 1.5$ | 15 | M6 x 1 | M10 $\times 1$ | Rc $1 / 8{ }^{* *}$ | 40 | 127 | 11.5 | 14 | 65 | 25 | 57 | 23 | 4H9 | 4.5 | M6x 1 | 10 | 48 | 39 | 4H9 | 4.5 | 28 | 4H9 | 4.5 |
| 50 | M12 $\times 1.75$ | 18 | M8 $\times 1.25$ | M14 $\times 1.5$ | Rc $1 / 8{ }^{* *}$ | 46 | 152 | 14.5 | 15 | 75 | 31.4 | 66 | 26.5 | 5 H 9 | 5.5 | M8 x 1.25 | 12 | 55 | 45 | 5H9 | 5.5 | 33 | 5H9 | 5.5 |

** In addition to Rc 1/8, G 1/8, NPT 1/8 and NPTF 1/8 are also available.

## Low-Speed Rotary Table <br> Rack \& Pinion Type MSQX Series

## Auto Switch Proper Mounting Position (at Rotation End Detection)




| Size | Rotation <br> angle | Reed switch |  |  |  |  | Solid state switch |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{B}$ | Operating angle <br> $(\theta \mathbf{~ m})$ | Hysteresis <br> angle | $\mathbf{A}$ | $\mathbf{B}$ | Operating angle <br> $(\theta \mathbf{~ m})$ | Hysteresis <br> angle |  |  |
| $\mathbf{1 0}$ | $190^{\circ}$ | 27 | 45 | $90^{\circ}$ | $10^{\circ}$ | 31 | 49 | $42^{\circ}$ | $10^{\circ}$ |  |
| $\mathbf{2 0}$ | $190^{\circ}$ | 35 | 62 | $80^{\circ}$ | $10^{\circ}$ | 39 | 66 | $35^{\circ}$ | $10^{\circ}$ |  |
| $\mathbf{3 0}$ | $190^{\circ}$ | 39 | 68 | $65^{\circ}$ | $10^{\circ}$ | 43 | 72 | $30^{\circ}$ | $10^{\circ}$ |  |
| $\mathbf{5 0}$ | $190^{\circ}$ | 49 | 83 | $50^{\circ}$ | $10^{\circ}$ | 53 | 87 | $24^{\circ}$ | $10^{\circ}$ |  |

Operating angle $\theta \mathrm{m}$ : Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft Hysteresis angle: Value of the auto switch hysteresis as represented by angle
Note) Since the above values are only provided as a guideline, they are not guaranteed.
In the actual setting, adjust them after confirming the auto switch operating condition.

# MSQX Series <br> Made to Order Specifications: 

Please contact SMC for detailed specifications, lead times and prices.

## How to Order




## Specifications

| Size | 10 | 20 | 30 | 50 |
| :--- | :---: | :---: | :---: | :---: |
| Rotation angle | $90^{\circ}, 180^{\circ}$ |  |  |  |
| Angle adjustment range | Each rotation end ${ }_{-5}^{+3^{\circ}}$ |  |  |  |

* Specifications other than the above are the same as standard.


## Weight

|  |  |  |  |  |  | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ |  |  |
| $90^{\circ}$ spec. | 600 | 1150 | 1460 | 2390 |  |  |
| $180^{\circ}$ spec. | 570 | 1090 | 1390 | 2280 |  |  |

* Values not including the auto switch weight. auto switches.


## Auto switch

| Nil | Without auto switch (Built-in magnet) |
| :--- | :--- |

* Refer to page 333 for the part no. of

|  |  | Rotation angle |  |
| :---: | :---: | :---: | :---: |
|  |  | $180^{\circ}$ | $90^{\circ}$ |
|  |  | X150: Standard, $180^{\circ}$ |  |
|  |  | X152: Symmetric type, $180^{\circ}$ | X153: Symmetric type, $90^{\circ}$ |

## Dimensions



Note) This component does not exist for $180^{\circ}$ type.

| $(\mathrm{mm})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Size | EA | EB | EC | ED | EE | EF | GA | GB | GC | GD | GE | K | NA | NB | NC | ND |
| $\mathbf{1 0}$ | 47.1 | 44.3 | 33.5 | 14 | 91.4 | 80 | 20 | 15.6 | 11 | 7.5 | 45.2 | M8 $\times 1$ | 10 | 5.5 | 12.5 | 4 |
| $\mathbf{2 0}$ | 57.1 | 55.3 | 43 | 18 | 112.4 | 100 | 25 | 19.5 | 14 | 9.5 | 56.4 | M10 1 | 14 | 8 | 16.5 | 4 |
| $\mathbf{3 0}$ | 58.4 | 60.3 | 46 | 19.5 | 118.7 | 110 | 27 | 21.5 | 14 | 9.5 | 61.5 | M10 $\times 1$ | 14 | 8 | 16.5 | 4 |
| $\mathbf{5 0}$ | 74.4 | 71.4 | 56 | 22 | 145.8 | 130 | 32 | 28 | 18 | 11.5 | 72.9 | M14 $\times 1.5$ | 19 | 8.5 | 19.5 | 6 |

[^6]
# CRQ2X/MSQX Series Specific Product Precautions 

Be sure to read this before handling the products.
Refer to back page 50 for Safety Instructions and pages 4 to 14 for Rotary Actuator and Auto Switch Precautions.

## Selection

## $\triangle$ Caution

1. Changes in speed occur in applications in which there are changes to the load during operation, such as the load being lifted (lowered) against gravity.
2. The purpose of this product is stable rotation at low-speed.
It does not provide any function to cushion the impact at the operation start or end.
3. Speed may vary at the rotation end depending on operating conditions. (This phenomenon can be avoided by using the external stopper.)

[^0]:    1 Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction
    *2 1 m type lead wire is only applicable to D-A93.

    * Lead wire length symbols: $0.5 \mathrm{~m} \ldots .$. Nil (Example) M9NW $1 \mathrm{~m} \ldots \ldots . \mathrm{M}$ (Example) M9NWM
    $3 \mathrm{~m} \ldots . . . \mathrm{L}$ (Example) M9NWL $5 \mathrm{~m} . . . . . \mathrm{Z}$ (Example) M9NWZ

    > * Auto switches marked with a " $\bigcirc$ " are produced upon receipt of orders.
    > * Refer to pages 837 and 838 for the details of solid state auto switch with pre-wired connector.

[^1]:    * Not including the weight of auto switch.

[^2]:    * The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

[^3]:    * Chart 5. Refer to page 328 for combination available between -XC $\square$ and -XC $\square$.

[^4]:    *1 Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction. *2 1 m type lead wire is only applicable to D-A93.

    * Lead wire length symbols: $0.5 \mathrm{~m} . . . .$. Nil (Example) M9NW

    | $1 \mathrm{~m} \ldots \ldots . \mathrm{M}$ | (Example) M9NWM |
    | :---: | :--- |
    | $3 \mathrm{~m} \ldots \ldots . \mathrm{L}$ | (Example) M9NWL |
    | $5 \mathrm{~m} \ldots \ldots \mathrm{Z}$ | (Example) M9NWZ |

    * Auto switches are shipped together, (but not assembled).
    * Auto switches marked with a " $\bigcirc$ " are produced upon receipt of orders.
    * Refer to pages 837 and 838 for the details of solid
    state auto switch with pre-wired connector.

[^5]:    * A set includes all parts above.

    A grease pack ( 10 g ) is included. When only a grease pack is needed, order with the following part number.
    Replacement parts/Grease pack part no: P523010-21 (10 g)

[^6]:    * Dimensions other than the above are the same as standard.

