Air Slide Table

MXJ Series

Height:

Traveling parallelism
0.005 mm

MW

ITS Front mounting act 0.03 mm

Note 1) Right angle degree of the front mounting surface to the body mounting surface
Note 2) Parallelism of the top mounting surface to the body mounting surface

M3 or M4 size screws are					
USed for body mounting. (Except for MXJ4 top mounting) Prevents damage to the screws when mounting					
Model			MXJ4	MXJ6	MXJ8
Threads for through-hole mounting on the top					

Mounting from the

Auto switch mountable in

 two rows- Auto switches can be mounted in two rows for all models in the range of MXJ4 to MXJ8.
- Two auto switches can be mounted with a 5 mm or longer stroke.

(1)Piping port
(2Axial piping plate
(3Axial piping port
(4)Retraction end stroke adjuster
(5Extension end stroke adjuster
(6) Witch rail
(7)Vacuum port (clean specifications)

Symmetric Type

Piping ports are provided both on the right and left sides. Switch rails and axial piping plates are interchangeable between the right and left side.

Standard type

Note) Values of stroke 10 mm .

Variations

| Model | | | Standard stroke (mm) | | | | Adjuster option | | | Piping option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard
 type | Symmetric
 type | Bore size
 (mm) | 5 | 10 | 15 | 20 | Extension
 end | Retraction
 end | Both
 ends | Axial piping
 type |
| MXJ4 | MXJ4L | 4.5 | \bullet | \bullet | - | - | \bullet | \bullet | \bullet | \bullet |
| MXJ6 | MXJ6L | 6 | \bullet | \bullet | \bullet | - | \bullet | \bullet | \bullet | \bullet |
| MXJ8 | MXJ8L | 8 | \bullet |

Clean Specification

Clean specification products are available with no dimensional changes. The same options are available as for standard products.

[^0]
.

MXJ Series

Model Selection

Load Factor
 Load Factor of Static Moment

Find the static moment $\mathrm{M}(\mathrm{N} \cdot \mathrm{m})$.
Find the allowable static moment Ma (N•m).

Find the load factor of the static moment.
$M=W \times 9.8(L n+A n) / 1000$
Corrected value of moment center position
distance An: Table (1)
Pitch, Yaw moment: Graph (2)
Roll moment: Graph (3)
$\alpha_{1}=M / M a$

3-2 Load Factor of Dynamic Moment

Find the dynamic moment Me (N•m).

Find the allowable dynamic moment Mea (N•m) from graph.

Find the load factor of the dynamic moment.
$M e=1 / 3 \cdot$ We $\times 9.8(\mathrm{Ln}+\mathrm{An}) / 1000$
mass equivalent to impact $\mathrm{We}=\delta \cdot \mathrm{W} \cdot \mathrm{V}$
δ : Bumper coefficient
Rubber bumper: 4/100
Metal stopper: 16/100
Corrected value of moment center position distance An: Table (1)

Pitch, Yaw moment: Graph (2)
$\alpha_{2}=\mathrm{Me} / \mathrm{Mea}$

Examine Mr.
$\mathrm{Mr}=0.1 \times 9.8(40+3) / 1000=0.042$
A2 $=3$
Obtain Mar $=0.6$ from $\mathrm{Va}=100$ in Graph (3).
$\alpha_{1}=0.042 / 0.6=0.07$

Examine Mep.

Mep $=1 / 3 \times 0.56 \times 9.8 \times(40+3) / 1000=0.078$
$\mathrm{We}=4 / 100 \times 0.1 \times 140=0.56$
A3 $=3$
Obtain Meap $=1.1$ from $V=140$ in Graph (2).
$\alpha_{2}=0.078 / 1.1=0.07$

Examine Mey.
Mey $=1 / 3 \times 0.56 \times 9.8 \times(50+11) / 1000=0.116$
$\mathrm{We}=0.56$
A3 $=11$
Obtain Meay $=1.1$ from $\mathrm{V}=140$ in Graph (2).
$\alpha_{2^{\prime}}=0.116 / 1.1=0.1$

Possible to use if the sum of the load factors does not exceed 1.

$$
\alpha_{1}+\alpha_{2}<1
$$

$\alpha_{1}+\alpha_{2}+\alpha_{2}{ }^{\prime}=$
Applicable because
$0.07+0.07+0.1=0.24<1$

Fig. (1) Overhang: Ln (mm), Correction Value of Moment Center Position Distance: An (mm)

	Pitch moment	Yaw moment	Roll moment
			-

Note) Static moment: Moment generated by gravity
Dynamic moment: Moment generated by impact when colliding with stopper

Graph (2) Allowable Moment Pitch Moment: Map, Meap Yaw Moment: May, Meay

Note) Use the average operating speed when calculating static moment.
Use the collision speed when calculating dynamic moment.(refer to page 307 .)
Table (1) Correction Value of Moment Center
Position Distance: An (mm)

Model	Corrected value of moment center position distance (Refer to Fig. 2.)		
	A1	A2	A3
MXJ4	10	3	10
MXJ6	10	3	11
MXJ8	12	4	13

Graph (3) Allowable Moment Roll Moment: Mar

Table (2) Max. Allowable Load Mass: Wmax (kg)

Model	Max. allowable load mass	
	Rubber bumper	Metal stopper
MXJ4	0.1	0.08
MXJ6	0.2	0.14
MXJ8	0.35	0.25

The above value represents the maximum value for each allowable load mass. For the maximum allowable load mass for each piston speed, please refer to Graph (1).

Table (3) Maximum Allowable Moment: Mmax (N•m)

Model	Pitch/Yaw moment: Mpmax/Mymax	Roll moment: Mrmax
MXJ4	1.1	0.6
MXJ6	1.1	0.6
MXJ8	1.5	1.0

The above value represents the maximum value of allowable moment. For the maximum allowable moment for each piston speed, please refer to Graph (2) and (3).

Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An ($\mathrm{n}=1$ to 3)	Corrected value of moment center position distance	mm	F	Allowable static load	N
Ln ($\mathrm{n}=1$ to 3)	Overhang	mm	V	Collision speed (Average operating speed $\times 1.4$)	mm / s
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	Va	Average operating speed	mm / s
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	W	Load mass	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	Wa	Mass equivalent to impact	kg
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	Wmax	Max. allowable load mass	kg
Mmax (Mpmax, Mymax, Mrmax)	Max. allowable moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	α	Load factor	-

Air Slide Table MXJ Series $\varnothing 4, \varnothing 6, \varnothing 8$

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . . \mathrm{Nil} \quad$ (Example) M9NW * Solid state auto switches marked with "○" are produced upon receipt of order.

$1 \mathrm{~m} \cdots \cdots \cdots \cdot$	M
$3 \mathrm{~m} \cdots \cdots \cdots \cdot$	L
$5 \mathrm{~m} \cdots \cdots \cdots \cdot \mathrm{Z}$	(Example) M9NWM
(Example) M9NWL	
(Example) M9NWZ	

* Refer to page 321 for applicable auto switches in addition to those listed above. \quad When an auto switch is not mounted
* For details on auto switches with a pre-wired connector, refer to page 1192 and 1193.
* Auto switches are shipped together (not assembled).

Caution properly, it can cause a malfunction. Refer to page 321 "Auto Switch Mounting".

Clean Series

11-MXJ	Standard model no.
$\begin{aligned} & \text { Clean Series } \\ & \text { 11: Vacuum type } \end{aligned}$	* External dimensions are identical to the standard model.

Model	Adjuster option	Grade	Intake flow L/min (ANR)*
11-MXJ4(L)	Without adjuster	Grade 3 (Class 100 or equivalent)	
	Metal stopper	Grade 4 (Class 1000 or equivalent)	
11-MXJ6(L)	Without adjuster	Grade 3 (Class 100 or equivalent)	
	Metal stopper	Grade 4 (Class 1000 or equivalent)	
11-MXJ8(L)	Without adjuster	Grade 3 (Class 100 or equivalent)	
	Metal stopper	Grade 4 (Class 1000 or equivalent)	

MXJ Series

Specifications

Standard Stroke

Model	Standard stroke (mm)
MXJ4	5,10
MXJ6	$5,10,15$
MXJ8	$5,10,15,20$

Option

Model	MXJ4	MXJ6	MXJ8
Bore size (mm)	4.5	6	8
Piping port size	M3 $\times 0.5$		
Fluid	Air		
Action	Double acting		
Operating pressure	0.15 to 0.7 MPa		
Proof pressure	1.05 MPa		
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$		
Operating speed range (Average operating speed) ${ }^{\text {Note) }}$	50 to $500 \mathrm{~mm} / \mathrm{s}$ (Metal stopper: 50 to $200 \mathrm{~mm} / \mathrm{s}$)		
Cushion	Rubber bumper (Metal stopper: Without cushion)		
Lubrication	Non-lube		
Stroke adjusting range (metal stopper)	Both ends each 0 to 5 mm		
Auto switch	Reed auto switch (2-wire, 3-wire) Solid state auto switch (2-wire, 3-wire) 2-color indicator solid state auto switch (2-wire, 3-wire)		
Stroke length tolerance	${ }_{0}^{+1} \mathrm{~mm}$		

Note) Average operating speed: Speed that the stroke is divided by a period of time from starting the

Adjuster option	Metal stopper	Extension end (CS)	Stroke adjustment range 0 to 5 mm
		Retraction end (CT)	
		Both ends (C)	
Functional option	Axial piping type (P)		Stroke adjuster is mountable on the axial piping.

Theoretical Output

$$
\stackrel{\mathrm{OUT}}{\leftarrow} \stackrel{\mathrm{IN}}{\longrightarrow}
$$

Model	Bore size (mm)	Rod size (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)					
					0.2	0.3	0.4	0.5	0.6	0.7
MXJ4	4.5	2	OUT	16	3	5	6	8	10	11
			IN	13	3	4	5	6	8	9
MXJ6	6	3	OUT	28	6	8	11	14	17	20
			IN	21	4	6	8	11	13	15
MXJ8	8	4	OUT	50	10	15	20	25	30	35
			IN	38	8	11	15	19	23	26

Note) Theoretical output $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

Moisture

Control Tube

IDK Series
When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.
Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the IDK series in the Best Pneumatics No. 6.

Weight

Basic Type (Without switch rail) MXJ $\square \square-\square \square \mathrm{N}$

Model	Standard stroke (mm)			Additional weight of adjuster option		
	5	10	15	20	Extension end	Retraction end
MXJ4	40	40	-	-	2	6
MXJ6	50	50	55	-	2	8
MXJ8	70	70	90	90	2	12

Axial Piping Type (Without switch rail) MXJ $\square \square-\square \square$ PN

Model	Standard stroke (mm)				Additional weight of adjuster option	
	5	10	15	20	Extension end	Retraction end
MXJ4	50	50	-	-	2	6
MXJ6	60	60	65	-	2	8
MXJ8	85	85	110	110	2	12

Model	Standard stroke (mm)			
	5	10	15	20
MXJ4	5	5	-	-
MXJ6	5	5	6	-
MXJ8	5	5	7	7

Table Accuracy

Optional Specifications

Rail assembly for mounting auto switch
When auto switch is mounted on air slide table without rail (MXJ $\square-\square \mathrm{N})$, this assembly is used.

$\begin{aligned} & 2 \times \mathrm{M} 1.7 \times 2 \\ & \text { Cross recessed head machine } \\ & \text { screw for precision instruments } \end{aligned}$	Applicable size	Switch rail part no.	Note
	MXJ4-5	MXJ-AD4-10	With magnet and mounting screw
®	MXJ4-10		
Ш	MXJ6-5	MXJ-AD6-10	
	MXJ6-10		
	MXJ6-15	MXJ-AD6-15	
M1.7 $\times 6$	MXJ8-5	MXJ-AD6-10	
Cross recessed head machine	MXJ8-10		
M1.7 $\times 10$ screw for precision instruments	MXJ8-15	MXJ-AD8-20	
Cross recessed head machine screw for precision instruments	MXJ8-20		

Stepped positioning pin
MXJ-LP

Use the optional stepped positioning pin that is provided because the positioning pin hole for the table is a through hole.

Stepped Positioning Pin

Part no.	Note
MXJ-LP	Common for all models

MXJ Series

Table Deflection (Reference Values)

Table displacement due to pitch moment load
Table displacement when loads are applied to the section marked with the arrow at the full stroke.

MXJ4

MXJ6

MXJ8

The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable mass. Refer to the Model Selection for the loadable mass.

Table displacement due to

 yaw moment loadTable displacement when loads are applied to the section marked with the arrow at the full stroke.

MXJ4

MXJ6

MXJ8

Table displacement due to roll moment load

Table displacement when loads are applied to the section marked with the arrow with the slide table retracted.

MXJ4

MXJ6

MXJ8

Dimensions

Basic type (Without switch rail)

MXJ4- $\square \square \mathrm{N}$

Vacuum port M3 $\times 0.5$ (Plugged when the product is a symmetric type.)
(Not plugged in the case of the clean series)

Note 1) Use an optional stepped positioning pin. (See page 311.)
Note 2) Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to them, and this may cause the auto switch malfunction.
Note 3) If workpiece holding bolts are used, they can touch the body and cause malfunctions, etc. Refer to the Specific Product Precautions.

A-A

MXJ Series

Dimensions

With stroke adjuster With adjuster on both ends MXJ4- $\square \mathbf{C} \square$

With adjuster on extension end MXJ4-■CSN

- © ¢ ¢ ¢	
- \dagger - \quad -	
- © (C) θ (9)	=

With adjuster on retraction end MXJ4- \square CTN

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

Axial piping
 MXJ4-■■PN

With switch rail MXJ4

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

When all the available options are mounted (switch rail, stroke adjuster, with axial piping).

Standard type MXJ4- $\square \mathbf{C P}$

Symmetric type
MXJ4L- \square CP

Air Slide Table MXJ Series

Dimensions

Basic type (Without switch rail)

MXJ6- $\square \square \square$

Vacuum port M3 $\times 0.5$ (Plugged when the product is a symmetric type.)
(Not plugged in the case of the clean series)

Note 1) Use an optional stepped positioning pin. (See page 311.) Note 2) Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to them, and this may cause the auto switch malfunction.
Note 3) If workpiece holding bolts are used, they can touch the body and cause malfunctions, etc.
Refer to the Specific Product Precautions.

Model	G	GA	H	I	J	K	M	Z	ZZ
MXJ6-5	11	17	17	5	17	27.5	42.5	37	43
MXJ6-10	11	17	17	5	17	27.5	42.5	37	43
MXJ6-15	13	22	20	7	20	31.5	47.5	42	48

A-A

MXJ Series

Dimensions

With stroke adjuster
With adjuster on both ends MXJ6- $\square \mathbf{C} \square$ N

With adjuster on extension end MXJ6- \square CS \square N

With adjuster on retraction end MXJ6-■पCTN

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

Axial piping

MXJ6-■ \square PN

With switch rail
MXJ6

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

When all the available options are mounted (switch rail, stroke adjuster, with axial piping)

Standard type
 MXJ6- \square CP

Symmetric type MXJ6L- \square CP

Dimensions

Basic type (Without switch rail)

MXJ8- $\square \square \square$

Vacuum port M3 $\times 0.5$ (Plugged when the product is a symmetric type.) (Not plugged in the case of the clean series)

Note 1) Use an optional stepped positioning pin. (See page 311.)
Note 2) Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to them, and this may cause the auto switch malfunction.
Note 3) If workpiece holding bolts are used, they can touch the body and cause malfunctions, etc.
Refer to the Specific Product Precautions.

Model	G	GA	H	I	J	K	M	\mathbf{Z}	ZZ
MXJ8-5	12	18	17	6	17	28.5	44.5	38	45
MXJ8-10	12	18	17	6	17	28.5	44.5	38	45
MXJ8-15	19	28	20	8	25	39.5	54.5	48	55
MXJ8-20	19	28	20	8	25	39.5	54.5	48	55

MXJ Series

Dimensions

With stroke adjuster With adjuster on both ends MXJ8- $\square \mathbf{C} \square \mathbf{N}$

With adjuster on extension end MXJ8- \square CS \square N

With adjuster on retraction end MXJ8- \square CTN

Axial piping
 MXJ8-■ \square PN

With switch rail MXJ8

In the case of a symmetric type,
it is located on the opposite surface.

When all the available options are mounted (switch rail, stroke adjuster, with axial piping)

> Standard type
> MXJ8- \square CP

Symmetric type MXJ8L- \square CP

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Martensitic stainless steel	Heat treated
$\mathbf{2}$	Table	Martensitic stainless steel	Heat treated
$\mathbf{3}$	Rod	Stainless steel	
$\mathbf{4}$	Piston	Brass	Electroless nickel plated
$\mathbf{5}$	Rod cover	Resin	
$\mathbf{6}$	Head cap	Resin	
$\mathbf{7}$	Floating bushing A	Stainless steel	
$\mathbf{8}$	Floating bushing B	Stainless steel	
9	Roller stopper A	Stainless steel	
$\mathbf{1 0}$	Roller stopper B	Stainless steel	
$\mathbf{1 1}$	Rod bumper	Polyurethane	
$\mathbf{1 2}$	Plate	Stainless steel	
$\mathbf{1 3}$	Plug	Steel + Fluorine	Zinc chromated
$\mathbf{1 4}$	Piston seal	NBR	
$\mathbf{1 5}$	Rod seal	NBR	
$\mathbf{1 6}$	O-ring	NBR	
$\mathbf{1 7}$	Steel balls	High carbon chrome bearing steel	

Note) Use caution because the martensitic stainless steel is inferior in corrosiveness when compared with austenitic stainless steel.

With Magnet, Rail

No.	Description	Material	Note
$\mathbf{1 8}$	Switch rail	Aluminum alloy	Hard anodized
$\mathbf{1 9}$	Magnet	-	
$\mathbf{2 0}$	Magnet holder	Stainless steel	

With Stroke Adjuster

No.	Description	Material	Note
$\mathbf{2 1}$	End plate	Stainless steel	
$\mathbf{2 2}$	Stopper pin	Steel	Heat treated, Trivalent chromated
$\mathbf{2 3}$	Adjustment bolt	Steel	Heat treated Note), Zinc chromated
$\mathbf{2 4}$	Adjustment nut	Steel	Zinc chromated

Note) Only the MXJ8 series is heat treated.
Axial Piping Type

No.	Description	Material	Note
$\mathbf{2 5}$	Axial piping plate	Aluminum alloy	Hard anodized
$\mathbf{2 6}$	Stud	Brass	Electroless nickel plated
$\mathbf{2 7}$	Gasket	Stainless steel + NBR	
$\mathbf{2 8}$	O-ring	NBR	

MXJ Series

Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at Stroke End)

Reed auto switch
D-A9■

Solid state auto switch
D-M9■
D-M9■W
D-M9■A

* Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Reed Auto Switch: D-A9 \square

Model	A				B				C			
	Stroke				Stroke				Stroke			
	5	10	15	20	5	10	15	20	5	10	15	20
MXJ4	9	4	-	-	14	14	-	-	0.5	0.5	-	-
MXJ6	9	4	3	-	14	14	18	-	0.5	0.5	-0.5	-
MXJ8	9	4	10	5	14	14	25	25	-0.5	-0.5	0.5	0.5

Solid State Auto Switch, 2-Color Indicator Solid State Auto Switch: D-M9 \square, D-M9 \square W, D-M9 \square A

Model	A				B				C			
	Stroke				Stroke				Stroke			
	5	10	15	20	5	10	15	20	5	10	15	20
MXJ4	13	8	-	-	18	18	-	-	4.5	4.5	-	-
MXJ6	13	8	7	-	18	18	22	-	4.5	4.5	3.5	-
MXJ8	13	8	14	9	18	18	29	29	3.5	3.5	4.5	4.5

Reed auto switch
D-A9 \square V
Solid state auto switch
D-M9 $\square V$
D-M9 \square WV
D-M9■AV
D-F8 \square

* Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Reed Auto Switch: D-A9■V

> Lead wire, perpendicular entry
Reed Auto Switch: D-A9 $\square \mathbf{V}$

Model	A				(mm)				
	Stroke				Stroke				
	5	10	15	20	5	10	15	-	
MXJ4	9	4	-	-	1.5	1.5	-	-	
MXJ6	9	4	3	-	1.5	1.5	2.5	-	
MXJ8	9	4	10	5	2.5	2.5	1.5	1.5	

Solid State Auto Switch, 2-Color Indicator Solid State Auto Switch: D-M9 \square V, D-M9 \square WV, D-M9 \square AV (mm)

Model	A				D			
	Stroke				Stroke			
	5	10	15	20	5	10	15	20
MXJ4	13	8	-	-	5.5	5.5	-	-
MXJ6	13	8	7	-	5.5	5.5	6.5	-
MXJ8	13	8	14	9	6.5	6.5	5.5	5.5

Solid State Auto Switch: D-F8 \square

Model	A				D			
	Stroke				Stroke			
	5	10	15	20	5	10	15	20
MXJ4	11	6	-	-	3.5	3.5	-	-
MXJ6	11	6	5	-	3.5	3.5	4.5	-
MXJ8	11	6	12	7	4.5	4.5	3.5	3.5

Operating Range

(mm)			
Auto switch model	Applicable bore size (mm)		
	$ø 4$	$ø 6$	$ø 8$
D-A9 $\square /$ A9 \square V	4	4	4
D-F8 \square	2	2	2
D-M9 $\square /$ M9 \square V D-M9 \square W/M9 \square WV D-M9 \square A/M9 \square AV	2	2.5	2.5

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming

Auto Switch Mounting

\triangle Caution

Auto Switch Mounting Tool

- When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle about 5 to 6 mm in diameter.

Tightening Torque

Tightening Torque of Auto Switch

Mounting Screw
$(\mathrm{N} \cdot \mathrm{m})$

Auto switch model	Tightening torque
D-F8 \square D-A9 $\square(V)$	0.10 to 0.20
D-M9 \square (V)	
D-M9 $\square \mathbf{W}(V)$	
D-M9 $\square \mathbf{A (V) ~}$	

When using the following solid state auto switches (D-M9 $\square(\mathrm{V})$, M9 $\square \mathrm{W}(\mathrm{V})$, F8 \square), mount them in the illustrated direction. The lower slot is for extension end detection.

- Lead wire, perpendicular entry (D-M9 \square V, M9 \square WV, M9 \square AV, F8 \square)

Extension end Retraction end

Upper slot
Lower slot

Caution on handling symmetric type

\triangle Caution

1. Maintain a minimum space if standard type and symmetric type are used side by side.

If the space is insufficient, it may cause auto switches to malfunction.

L Dimension

Without shielding plate	8 mm
With shielding plate	3 mm

Placing in the shield plate (0.2 to 0.3 mm iron plate) between the products allows the distance to be smaller.

[^1]Please contact SMC for detailed dimensions, specifications and lead times.

Change the materials for the piston seal, rod seal and O-rings to fluororubber.

Specifications

Type	Fluororubber seal
Bore size (mm)	$4.5,6,8$
Seal material	Fluororubber

* Dimensions other than the above is the same as the standard type.

Martensitic stainless steel is used for the table and body. Use this treatment if more effective anti-corrosive measures are necessary. Anti-corrosive treatment is applied to the table and body.

Specifications

Type	Anti-corrosive guide unit
Bore size (mm)	$4.5,6,8$
Surface treatment	Special anti-corrosive treatment ${ }^{(2)}$

* 1 Dimensions other than the above is the same as the standard type.
* 2 The special anti-corrosive treatment turns the table and body black.

Change the materials for the piston seal, rod seal and O-rings to EPDM.

Specifications

Type	EPDM seal
Bore size (mm)	$4.5,6,8$
Seal material	EPDM
Grease	PTFE grease

* Dimensions other than the above is the same as the standard type.

Warning
 Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Selection

© Caution

1. Operate loads within the range of the operating limits.
Select the model considering maximum loading weight and allowable moment. For details, refer to "Model Selection" on pages 307 and 308. When actuator is used outside of operating limits, eccentric loads on guide will be in excess of this causing vibration on guide, inaccuracy, and shortened life.
2. If intermediate stops by external stopper is done, avoid ejection.
If lurching occurs, damage can result. When making an inermediate stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.
3. Do not use it in such a way that excessive external force or impact force could work on it.
This could result in damage.

Mounting
 \triangle Caution

1. Do not scratch or dent on the mounting side of body, table and end plate.
The damage will result in a decrease in parallelism, vibration of guide and an increase in moving part resistance.
2. Do not scratch or dent on the forward side of the rail or guide.
This could result in looseness and increased operating resistance, etc.

Mounting

© Caution

3. Do not apply excessive power and load when work is mounted.
If the external force more than the allowable moment were applied, looseness of the guide unit or increased operating resistance could take place.
4. Flatness of mounting surface should be 0.02 mm or less.
Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration in the guide unit and increased operating resistance, etc.
5. Select the proper connection with the load which has external support and/or guide mechanism on the outside, and align it properly.
6. Avoid contact with the body during operation.
Hands, etc. may get caught in the stroke adjuster. Install a cover as a safety measure if there are instances to be near the slide table during operation.
7. Keep away from objects which are influenced by magnets.
Since a body has magnets built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.

8. Do not attach magnets to the body and table section.
Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc.
are attached to them, and this may cause malfunction of auto switches, etc.
9. When mounting the body, use appropriate length of screws and do no exceed the maximum tightening torque.
Tightening with a torque above the limit could malfunction. Whereas tightening insufficiently could result in misalignment or come to a drop.

Model	Bolt	Maximum tightexing torque $(\mathrm{N} \cdot \mathrm{m})$	Maximum screw-in depth $\mathrm{L}(\mathrm{mm})$
MXJ4	M3 $\times 0.5$	1.14	5
MXJ6	M4 $\times 0.7$	2.7	6
MXJ8	M4 $\times 0.7$	2.7	6

10. Use the below speed controllers and fittings.
If other speed controllers and fittings are used, they can interfere with the mounting surface.

Model	Side piping port	Axial piping port	Vacuum port
MXJ4	AS1200-M3	$\begin{gathered} \text { AS1200-M3 } \\ \text { AS1201F-M3 } \\ \text { AS1301F-M3 } \end{gathered}$	Miniature fittings M3 series
MXJ6	AS1200-M3		
MXJ8	AS1301F-M3		

Mounting

© Caution

1. Front mounting			
\triangle Caution To prevent the workpiece holding bolts from touching the guide block, use bolts that are at least shorter than the maximum screw-in depth. If longer bolts are used, they can touch the guide and cause a malfunction.			
Model	Bolt	Maximum tightening torque ($\mathrm{N} \cdot \mathrm{m}$)	Maximum screw-in depth L (mm)
MXJ4	M3 x 0.5	1.14	3.5
MXJ6	M3 $\times 0.5$	1.14	3.5
MXJ8	M3 $\times 0.5$	1.14	3.5

2. Top mounting

. Caution To prevent the workpiece holding bolts from touching the guide block, use bolts that are at least shorter than the maximum screwin depth. If longer bolts are used, they can touch the guide and cause a malfunction.

Model	Bolt	Maximum tightening torque $(\mathrm{N} \cdot \mathrm{m})$	Maximum screw-in depth $\mathrm{L}(\mathrm{mm})$
MXJ4	M3 $\times 0.5$	1.14	4
MXJ6	M3 $\times 0.5$	1.14	4
MXJ8	M3 $\times 0.5$	1.14	5.5

1. Use a stepped positioning pin that is provided optionally because the positioning pin hole for the table is through.
(Refer to page 311.)

Operating Environment

© Caution

1. Do not use in an environment, where the product could be exposed to liquids such as cutting oil, etc.
Using in an environment where the product could be exposed to cutting oil, coolant, oil, etc. could result in looseness, increased operating resistance, air leakage, etc.
2. Do not use in an environment, where the product could be exposed directly to foreign materials such as powder dust, blown dust, cutting chips, spatter, etc.
This could result in looseness, increased operating resistance, air leakage, etc.
Contact us regarding use in this kind of environment.
3. Do not use in direct sunlight.
4. When there are heat sources in the surrounding area, block off them off.
When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.
5. Do not subject it to excessive vibration and/or impact.
Contact us regarding use in this kind of environment, since this can cause damage or a malfunction.
6. Be careful about the corrosion resistance of the linear guide.
Be careful that the body and table use martensitic stainless steel, which is inerior to austenitic stainless steel in terms of corrosion resistance. Rust may result especially in an environment that allows water drops from condensation to stay on the surface.

Caution on Adjuster Option

Stroke Adjuster

Caution

1. Refer to the below table for lock nut tightening torque.
Insufficient torque will cause a decrease in the positioning accuracy.

Model	Thread size	Tightening torque (N•m)
MXJ4	M2.5 $\times 0.45$	0.36
MXJ6	M2.5 $\times 0.45$	0.36
MXJ8	M3 $\times 0.5$	0.63

2. When sroke adjuster is adjusted, do not hit the table with a wrench, etc.
This could result in looseness.

MXJ Series
Specific Product Precautions 3
Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages $\mathbf{3}$ to $\mathbf{1 2}$ for Actuator and Auto Switch Precautions.

Caution on replacing standard type to symmetric type, and vice versa

\triangle Caution

Switch rail, axial piping plate and port location can be changed symmetrically. In the event of replacing them, secure with the tightening torque below.

Thread	Thread size	Tightening torque (N•m)
Cross-recessed head machine screw	$\mathrm{M} 1.7 \times 0.35$	0.1
Stud	$\mathrm{M} 3 \times 0.5$	0.3
Dedicated plug	$\mathrm{M} 3 \times 0.5$	0.3
Hexagon socket set screw	$\mathrm{M} 3 \times 0.5$	0.3

* No need to applying sealant to the dedicated plug, and stud when exchanging.

[^0]: * Operating pressure: 0.5 MPa when operating direction is OUT.

 OUT $\leftarrow \square \square \mathbb{N}$

[^1]: I Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted.

 * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) and a solid state auto switch (D-F8) are also available. Refer to pages 1136 and 1137 for details.
 L pages 1136 and 1137 for detalls.

